If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3.55x^2+9x=0
a = 3.55; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·3.55·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*3.55}=\frac{-18}{7.1} =-2+2.11111111111/3.94444444444 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*3.55}=\frac{0}{7.1} =0 $
| 514=x-25 | | 89x=267 | | 6x+3,7=2,5x+28,9 | | 1.2+x=50 | | 0.5x=39 | | 6x+3,7=28,9 | | 10x-20+2x+8=180 | | h=-(1)^2+8(1)+4 | | Y-6=-3(x-8) | | 3^x+3^(x+2)=30 | | Y-8=3(x-6) | | /8x+2.5=3/8x+1.5+1/4x | | 32x+25=21x=10x | | (9x-4)/2=2x+6 | | -5a+22=2a+43 | | 3x+15=15+27 | | 90a=378 | | 28x^2+1=13x+7 | | -0.3(0.7x-0.9=-1.83 | | 10x^2+20x=150 | | (X+3)+(y+3)=42 | | 2x-x=123 | | X^2-10x+30=54 | | 3=x+24/6 | | 15=2p+9-5p | | x2+(3x)=700 | | 35=9×x | | 9^(-9y)=2 | | Y=20+13x | | m=4=14 | | 4x/x-3=2+12/x-3 | | x=3=5x-7 |